SOLUTIONS FOR IMO 2005 PROBLEMS

AMIR JAFARI AND KASRA RAFI

Problem 1. Six points are chosen on the sides of an equilateral triangle
ABC: Ay, Ay on BC,; By, By on CA; C1, Cy on AB. These points are the
vertices of a convex hexagon A; As B; BoC1Cs with equal side lengths. Prove
that the lines A;Bs, B1Cy and (1A, are concurrent.

Solution: In triangles AABsCy and ABCsA,, /A = /B. Therefore, if
/BCyA, > LAByCh, then LBA1Cy < LAC1By. But |A102’ = ‘BQCl‘.
Therefore, the law of sines implies

|BA1| > |ACL| = |BCs| < |ABs|.
On the other hand, we have |BCs| + |AC1| = |ABs| + |CBy|. Therefore,
|BCQ| < ’ABQ’ = |A01| > |CBH
By a similar argument, we have:
|BA1| > ‘A01| = \ACl\ > ’CBl‘
= |CBi| > |BA4|.

The contradiction shows that |BA;| = |ACy| = |CBy|. Thus, the three
triangles AAB>C1, ABC5A1 and ACAsB; are congruent. This implies
that the triangle AAsBs(C is equilateral and A1 Bs, B1Cs and C1 A are its
heights. Therefore they are concurrent.
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Problem 2. Let a1, ao,... be a sequence of integers with infinitely many
positive terms and infinitely many negative terms. Suppose that for each
positive integer n, the numbers a1, as, ..., a,, leave n different remainders on
division by n. Prove that each integer occurs exactly once in the sequence.

Solution: Let A, = {ai,...,an}. Elements of A, are distinct, because they
are distinct modulo n. Observe that, for a;,a; € Ap, k = |a; — aj| < n,
because, otherwise, a;,a; € Aj and a; = a; mod k. Therefore,

max A,, — min 4,, < n.
But A, consists of n distinct integers. Therefore, for m,, = min A4,,
Ap ={mp,my+1,...,my, +n—1}.

There are infinitely many negative and positive numbers in the sequence;
therefore, all integers have to appear in our sequence. This finishes the
proof.
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Problem 3. Let x, y and z be positive real numbers such that zyz > 1.
Prove that

25— g2 P — g2 25 2

>0
$5+y2+22+.’E2+y5+22+$2+y2+25_

Solution: The above inequality is equivalent to

(1) 1 n 1 . 1 < 3 ‘
P +22 2P 422 2?2+ P+ T a2y 4 22

We have

(Cauchy-Schwarz) (z° 4+ 3 +2%) (y 2 + 92 + 2%) > (Vadyz + 3 + 2°)?

(ay=2 1) > (@ g+ )
Therefore,
1 < yz+y*+ 22 <y22i+y2+z2
a5 +y?+22 T (a2 +yr 4222 T (a? +y?r 42
Similarly,
1 #—i—xz—i—% 1 @—i—ﬁ—i—yz

< d .
22+ B+ 22— (22 + 42 + 22)2 an 22+ 2+ 20 = (22 + 42 + 22)2
Adding the above three inequalities proves (1).
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Problem 4. Consider the sequence aq, asg, ... defined by
an=2"+3"4+6"-1 (n=1,2,...).
Determine all positive integers that are relatively prime to every term of the
sequence.
Solution: If p > 3, then 2°724+3P"24+67"2 =1 mod p. To see this, multiply
both sides by 6 to get :
3.2P71 4 2.3 141 P71 =6 mod p,

which is a consequence of Fermat’s little theorem. Therefore p divides a,_o.
Also, 2 divides a1 and 3 divides as. So, there is no number other than 1
that is relatively prime to all the terms in the sequence.
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Problem 5. Let ABCD be a given convex quadrilateral with sides BC
and AD equal in length and not parallel. Let £ and F' be interior points
of the sides BC' and AD respectively such that BE = DF. The lines AC
and BD meet at P, the lines BD and EF meet at @, the lines EF and AC
meet at R. Consider all the triangles PQR as E and F vary. Show that the
circumcircles of these triangles have a common point other than P.

A B

D

Solution: The circumcircles of the triangles APAD and APBC intersect
in points P and 7. We claim that 7" is the desired point, i.e., P, @, R and
T lie on a circle. To prove this we show that the angles /TPR and ZTQR
are equal.

The angles ZADT and ZAPT are complimentary, therefore ZADT =
/ZTPC. But LT PC is also equal to ZT'BC. Therefore, ZADT = /TBC.
Similarly, /TAD = ZTCB. This implies that the triangles AATD and
ABTC are equal. In particular, ATFD = ATEB. This, in turn, im-
plies that the isosceles triangles AETF and ABTD are similar. Therefore,
ZQFT = ZQDT. This means that D, (), F and T lie on a circle, and
thus ZFDT = ZRQT. But ZFDT was also equal to ZT'PR. Hence,
/TPR = /ZTQR which is as we claimed.
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Problem 6. In a mathematical competition 6 problems were posed to the

contestants. Each pair of problems was solved by more than % of the con-
testants. Nobody solved all 6 problems. Show that there were at least 2

contestants who each solved exactly 5 problems.

Solution: Let n be the number of contestants, ¢ be the number of contestants
who solved exactly 5 problems and p;; be the number of contestants who
solved problems ¢ and j, for 1 <4,j < 6. We know that:

6\ 2n+1
Zpijz <2> —— =6n+3,
Z7J

Also,
) 4
Zpij < <2> c+ (2>(n—c) =6n-+4c.
17]

Therefore, 4c > 3. This shows that there is at least one contestant who
solved exactly 5 problems. If 2n + 1 is not divisible by 5, then we can
replace % in the above argument by 2”—;2 and this will imply that 4¢ > 6
and hence there are at least two contestants who have solved 5 problems.
Now assume that 2n + 1 is divisible by 5, i.e., n = 5k + 2, for some pos-
itive integer k. Assuming that there is exactly one person who has solved
5 problems and the rest have solved exactly 4 problems will lead to a con-
tradiction, as we now argue in two cases. We call the only person who has

solved 5 problems the champion.

Case 1. Assume that n is not divisible by 3. Let a; be the number of
contestants besides the champion who have solved problem i. Then

d ai=4(n—1)=4n-4.
%

Let problem 1 be the problem that the champion missed. There are 5 pairs

of problems containing problem 1, and they have been solved by at least

5% = 2n + 1 contestants. Since each person who has solved problem 1

has solved exactly 3 other problems, every such person has solved 3 of above
5 pairs of problems. Thus

3a; > 2n+ 1.

For ¢+ > 1, the champion has solved 4 pairs that include i. The above
argument implies, 3a; > 2n — 3. But, n is not divisible by 3. Therefore

3ai > 2n — 2.
Adding the above inequalities we get:
> 3a;>(2n+1)+502n—2)=12n-09,

which is a contradiction because the left hand side is 12n — 12.
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Case 2. We are left with the case where n is divisible by 3 and is of the
form 5k + 2, i.e., n = 15h — 3, and each pair of problems is solved by at
least 6 h — 1 contestants. As before, assume that the champion has not
solved problem 1 and that a; be the number of people who have solved this
problem. FEach of them has solved 3 other problems. So they have each
solved 3 pairs of problems containing problem 1. That is:

3a; >5(6h—1)=30h—5.
But a; is an integer; therefore,
(2) a; > 10h — 1.
Restricting our attention to 10 pairs of problems that do not contain 1, we
observe that there are at least 10 (6 h — 1) contestants who have solved at
least one of these pairs. On the other hand, the champion has solved 10

pairs, the a; contestants who have solved problem 1 have solved 3 a; pairs
and the rest have solved (;1) (15h — 4 — a;) pairs. That is,

4
10+ 3a; + <2> (15h —4—a;) >10(6h—1) = 3a; < 30h — 4.

This contradicts the inequality (2). Therefore, more than one contestant
solved 5 problems.



