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Problem 1. (Proposed by David Monk, United Kingdom)
The side BC of the triangle ABC is extended beyond C to D so that CD = BC.
The side CA is extended beyond A to E so that AE = 2CA.

Prove that if AD = BE, then the triangle ABC is right-angled.

Solution 1: Define F so that ABFD is a parallelogram. Then E,A,C, F are collinear
(as diagonals of a parallelogram bisect each other) and BF = AD = BE. Further, A is
the midpoint of EF , since AF = 2AC, and thus AB is an altitude of the isosceles triangle
EBF with apex B. Therefore AB ⊥ AC.
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A Variant. Let P be the midpoint of [AE], so that AP = AB because AE = 2AB.
Let Q be the midpoint of [AB]. Then PQ = 1

2BE = 1
2AD = CQ. Hence PA is a median

of the isosceles triangle CPQ. In other words, PA ⊥ AB, which completes the proof.
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Solution 2: Notice that A is the centroid of triangle BDE, since C is the midpoint of
[BD] and AE = 2CA. Let M be the midpoint of [BE]. Then M , A, D lie on a line, and
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further, AM = 1
2AD = 1

2BE. This implies that ∠EAB = 90◦.
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Solution 3: Let P be the midpoint [AE]. Since C is the midpoint of [BD], and,
moreover, AC = EP , we have

[ACD] = [ABC] = [EBP ].

But AD = BE, and, as mentioned previously, AC = EP , so this implies that

∠BEP = ∠CAD or ∠BEP = 180◦ − ∠CAD.

But ∠CAD < ∠CED and ∠BEC + ∠CED < 180◦, so we must be in the first case,
i.e. ∠BEP = ∠CAD. It follows that triangles BEP and DAC are congruent, and thus
∠BPA = ∠ACB. But AP = AC, so BA is a median of the isosceles triangle BCP . Thus
AB ⊥ PC, completing the proof.
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Solution 4: Write β = ∠ECB, and let x = AC, y = BC = CD, z = BE = AD.
Notice that EC = 3x. Then, using the cosine theorem,

z2 = x2 + y2 + 2xy cos β in triangle ACD;
z2 = 9x2 + y2 − 6xy cos β in triangle BCE.
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Hence 4z2 = 12x2 + 4y2 or z2− y2 = 3x2. Let H be the foot of the perpendicular through
B to AC, and write h = BH. Then

y2 − h2 = CH2, z2 − h2 = EH2.

Hence z2 − y2 = EH2 − CH2. Substituting from the above,

EH2 − CH2 = 3x2 = EA2 − CA2.

Thus H = A, and hence the triangle ABC is right-angled at A.

Remark. It is possible to conclude directly from z2 − y2 = 3x2 = (2x)2 − x2 using
Carnot’s theorem.

Solution 5: Writing a = BC, b = CA, c = AB, we have

a2 = b2 + c2 − 2bc cos∠A
c2 = a2 + b2 − 2ab cos∠C

}
in triangle ABC;

EB2 = 4b2 + c2 + 4bc cos∠A in triangle AEB;
AD2 = a2 + b2 + 2ab cos∠C in triangle ACD.

Thus

6b2 + 3c2 − 2a2 = 4b2 + c2 + 4bc cos∠A = EB2 = AD2

= a2 + b2 + 2ab cos∠C = 2a2 + 2b2 − c2,

which gives a2 = b2 + c2. Therefore ∠BAC is a right angle by the converse of the theorem
of Pythagoras.

Solution 6: Let −→AC = ~x and −→AB = ~y. Now −−→AD = 2~x− ~y and −−→EB = 2~x+ ~y. Then
−−→
BE ·

−−→
BE = −−→AD · −−→AD ⇐⇒ (2~x+ ~y)2 = (2~x− ~y)2 ⇐⇒ ~x · ~y = 0

and thus AC ⊥ AB, whence triangle ABC is right-angled at A.

Remark. It is perhaps more natural to introduce −→CA = ~a and −−→CB = ~b. Then we have
the equality(

3~a−~b
)2

=
(
~a+~b

)2
=⇒ ~a ·

(
~a−~b

)
= 0.
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Solution 7: Let a, b, c, d, e denote the complex co-ordinates of the points A, B, C, D,
E and take the unit circle to be the circumcircle of ABC. We have

d = b+ 2(c− b) = 2c− b and e = c+ 3(a− c) = 3a− 2c .

Thus b− e = (d− a) + 2(b− a), and hence

BE = AD ⇐⇒ (b− e)(b− e) = (d− a)(d− a)
⇐⇒ 2(d− a)(b− a) + 2(d− a)(b− a) + 4(b− a)(b− a) = 0
⇐⇒ 2(d− a)(a− b) + 2(d− a)(b− a)ab+ 4(b− a)(a− b) = 0
⇐⇒ (d− a)− (d− a)ab+ 2(b− a) = 0
⇐⇒ 2c− b− a− 2cab+ a+ b+ 2(b− a) = 0
⇐⇒ c2 − ab+ bc− ac = 0
⇐⇒ (b+ c)(c− a) = 0,

implying c = −b and that triangle ABC is right-angled at A.

Solution 8: We use areal co-ordinates with reference to the triangle ABC. Recall that if
(x1, y1, z1) and (x2, y2, z2) are points in the plane, then the square of the distance between
these two points is −a2vw − b2wu− c2uv, where (u, v, w) = (x1 − x2, y1 − y2, z1 − z2).
In our case A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1), so E = (3, 0, 2) and, introducing
point F as in the first solution, F = (−1, 0, 2). Then

BE2 = AD2 ⇐⇒ −2a2 + 6b2 + 3c2 = 2a2 + 2b2 − c2,

and thus a2 = b2 + c2. Therefore ∠BAC is a right angle by the converse of the theorem
of Pythagoras.
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Problem 2. (Proposed by Matti Lehtinen, Finland)
Determine all integers m for which the m × m square can be dissected into
five rectangles, the side lengths of which are the integers 1, 2, 3, . . . , 10 in some
order.

Solution: The solution naturally divides into three different parts: we first obtain some
bounds on m. We then describe the structure of possible dissections, and finally, we deal
with the few remaining cases.

In the first part of the solution, we get rid of the cases with m 6 10 or m > 14.
Let `1, . . . , `5 and w1, . . . , w5 be the lengths and widths of the five rectangles. Then the
rearrangement inequality yields the lower bound

`1w1 + `2w2 + `3w3 + `4w4 + `5w5

= 1
2

(
`1w1 + `2w2 + `3w3 + `4w4 + `5w5 + w1`1 + w2`2 + w3`3 + w3`4 + w5`5

)
>

1
2

(
1 · 10 + 2 · 9 + 3 · 8 + · · ·+ 8 · 3 + 9 · 2 + 10 · 1

)
= 110,

and the upper bound

`1w1 + `2w2 + `3w3 + `4w4 + `5w5

= 1
2

(
`1w1 + `2w2 + `3w3 + `4w4 + `5w5 + w1`1 + w2`2 + w3`3 + w3`4 + w5`5

)
6

1
2

(
1 · 1 + 2 · 2 + 3 · 3 + · · ·+ 8 · 8 + 9 · 9 + 10 · 10

)
= 192.5,

As the area of the square is sandwiched between 110 and 192.5, the only possible candi-
dates for m are 11, 12, and 13.

In the second part of the solution, we show that a dissection of the square into five
rectangles must consist of a single inner rectangle and four outer rectangles that each
cover one of the four corners of the square. Indeed, if one of the sides the square had
three rectangles adjacent to it, removing these three rectangles would leave a polygon
with eight vertices, which is clearly not the union of two rectangles. Moreover, since
m > 10, each side of the square has at least two adjacent rectangles. Hence each side of
the square has precisely two adjacent rectangles, and thus the only way of partitionning
the square into five rectangles is to have a single inner rectangle and four outer rectangles
each covering of the four corners of the square, as claimed.

Let us now show that a square of size 12 × 12 cannot be dissected in the desired
way. Let R1, R2, R3 and R4 be the outer rectangles (in clockwise orientation along the
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boundary of the square). If an outer rectangle has a side of length s, then some adjacent
outer rectangle must have a side of length 12 − s. Therefore, neither of s = 1 or s = 6
can be sidelengths of an outer rectangle, so the inner rectangle must have dimensions
1×6. One of the outer rectangles (say R1) must have dimensions 10×x, and an adjacent
rectangle (say R2) must thus have dimensions 2 × y. Rectangle R3 then has dimensions
(12− y)× z, and rectangle R4 has dimensions (12− z)× (12− x). Note that exactly one
of the three numbers x, y, z is even (and equals 4 or 8), while the other two numbers are
odd. Now, the total area of all five rectangles is

144 = 6 + 10x+ 2y + (12− y) z + (12− z)(12− x),

which simplifies to (y−x)(z− 2) = 6. As exactly one of the three numbers x, y, z is even,
the factors y − x and z − 2 are either both even or both odd, so their product cannot
equal 6, and thus there is no solution with m = 12.

Finally, we handle the cases m = 11 and m = 13, which indeed are solutions. The
corresponding rectangle sets are 10 × 5, 1 × 9, 8 × 2, 7 × 4 and 3 × 6 for m = 11, and
10 × 5, 9 × 8, 4 × 6, 3 × 7 and 1 × 2 for m = 13. These sets can be found by trial and
error. The corresponding partitions are shown in the figure below.

10×5

1×9

8×27×4

3×6

10×5

3×7 4×6

1×2

9×8

Remark. The configurations for m = 11 and m = 13 given above are not unique.

A Variant for Obtaining Bounds. We first exclude the cases m 6 9 by the observa-
tion that one of the small rectangles has a side of length 10 and must fit into the square;
hence m > 10.

To exclude the cases m > 14, we work via the perimeter: as every rectangle has at
most two sides on the boundary of the m×m square, the perimeter 4m of the square is
bounded by 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55; hence m 6 13.
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We are left to deal with the case m = 10: clearly, the rectangle with side length 10
must have one its sides of length 10 along the boundary of the square. The remaining
rectangle R of dimensions 10× s, say, would have to be divided into four rectangles with
different sidelengths strictly less than 10. If there were at least two rectangles adjacent
to one of the sides of length s of R, removing these two rectangles from R would leave
a polygon with at least six vertices (since the sidelengths of the rectangles partitioning
R are strictly less than 10). It is clearly impossible to partition such a polygon into no
more than two rectangles with different sidelengths. Hence, given a side of length s of R,
there is only one rectangle adjacent to that side, so the rectangles adjacent to the sides
of length s of R would have to have the same length s, a contradiction.

Remark. Note that the argument of the second part of the main solution cannot be
directly applied to the case m = 10.

A Variant for Dealing with m = 12. As in the previous solution, we show that the
inner rectangle must have dimensions 1× 6. Since the area of the square and the area of
the inner rectangle are even, the areas of the four outer rectangles must sum to an even
number. Now the four sides of the square are divided into segments of lengths 2 and 10,
3 and 9, 4 and 8, and 5 and 7. Hence the sides with adjacent segments of lengths 3 and
9, and 5 and 7 must be opposite sides of the square (otherwise, exactly one of the outer
rectangles would have odd area). However, the difference of two rectangle side lengths on
opposite sides of the square must be 1 or 6 (in order to accomodate the inner rectangle).
This is not the case, so there is no solution with m = 12.

Remark. In the case m = 12, having shown that the inner rectangle must have dimen-
sions 1 × 6, this case can also be dealt with by listing the remaining configurations one
by one.
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Problem 3. (Proposed by Dan Schwarz, Romania)
Let n be a positive integer.

(a) Prove that there exists a set S of 6n pairwise different positive integers,
such that the least common multiple of any two elements of S is no larger
than 32n2.

(b) Prove that every set T of 6n pairwise different positive integers contains
two elements the least common multiple of which is larger than 9n2.

Solution: (a) Let the set A consist of the 4n integers 1, 2, . . . , 4n and let the set B
consist of the 2n even integers 4n + 2, 4n + 4, . . . , 8n. We claim that the 6n-element set
S = A ∪B has the desired property.

Indeed, the least common multiple of two (even) elements of B is no larger than
8n · (8n/2) = 32n2, and the least common multiple of some element of A and some
element of A ∪B is at most their product, which is at most 4n · 8n = 32n2.

(b) We prove the following lemma: “If a set U contains m+ 1 integers, where m > 2,
that are all not less than m, then some two of its elements have least common multiple
strictly larger than m2.”

Let the elements of U be u1 > u2 > · · · > um+1 > m. Note that 1/u1 6 1/ui 6 1/m
for 1 6 i 6 m + 1. We partition the interval [1/u1; 1/m] into m subintervals of equal
length. By the pigeonhole principle, there exist indices i, j with 1 6 i < j 6 m + 1 such
that 1/ui and 1/uj belong to the same subinterval. Hence

0 <
1
uj

− 1
ui

6
1
m

( 1
m
− 1
u1

)
<

1
m2 .

Now 1/uj−1/ui is a positive fraction with denominator lcm(ui, uj). The above thus yields
the lower bound lcm(ui, uj) > m2, completing the proof of the lemma.

Applying the lemma with m = 3n to the 3n + 1 largest elements of T , which are all
not less than 3n, we arrive at the desired statement.

A Variant. Alternatively, for part (b), we prove the following lemma: “If a set U
contains m > 2 integers that all are greater than m, then some two of its elements have
least common multiple strictly larger than m2.”

Let u1 > u2 > · · · > um be the elements of U . Since um > m = m2/m, there exists
a smallest index k such that uk > m2/k. If k = 1, then u1 > m2, and the least common
multiple of u1 and u2 is strictly larger than m2. So let us suppose k > 1 from now on, so
that we have uk > m2/k and uk−1 6 m2/(k − 1). The greatest common divisor d of uk−1
and uk satisfies

d 6 uk−1 − uk <
m2

k − 1 −
m2

k
= m2

(k − 1)k .
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This implies m2/(dk) > k − 1 and uk/d > k − 1, and hence uk/d > k. But then the least
common multiple of uk−1 and uk equals

uk−1uk

d
> uk ·

uk

d
>

m2

k
· k = m2,

and the proof of the lemma is complete.
If we remove the 3n smallest elements from set T and apply the lemma with m = 3n

to the remaining elements, we arrive at the desired statement.
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Problem 4. (Proposed by Vesna Iršič, Slovenia)
Find all positive integers a and b for which there are three consecutive integers
at which the polynomial

P (n) =
n5 + a

b

takes integer values.

Solution 1: Denote the three consecutive integers by x− 1, x, and x+ 1, so that

(x−1)5 +a ≡ 0 (mod b), x5 +a ≡ 0 (mod b), (x+1)5 +a ≡ 0 (mod b). (1)

By computing the differences of the equations in (1) we get

A := (x+ 1)5 − (x− 1)5 = 10x4 + 20x2 + 2 ≡ 0 (mod b), (2)

B := (x+ 1)5 − x5 = 5x4 + 10x3 + 10x2 + 5x+ 1 ≡ 0 (mod b). (3)

Adding the first and third equation in (1) and subtracting twice the second equation yields

C := (x+ 1)5 + (x− 1)5 − 2x5 = 20x3 + 10x ≡ 0 (mod b). (4)

Next, (2) and (4) together yield

D := 4xA− (2x2 + 3)C = − 22x ≡ 0 (mod b). (5)

Finally we combine (3) and (5) to derive

22B + (5x3 + 10x2 + 10x+ 5)D = 22 ≡ 0 (mod b).

As the positive integer b divides 22, we are left with the four cases b = 1, b = 2, b = 11
and b = 22.

If b is even (i.e. b = 2 or b = 22), then we get a contradiction from (3), because the
integer B = 2(5x3 + 5x2) + 5(x4 + x) + 1 is odd, and hence not divisible by any even
integer.

For b = 1, it is trivial to see that a polynomial of the form P (n) = n5 + a, with a any
positive integer, has the desired property.

For b = 11, we note that

n ≡ 0, 1, 2,3, 4, 5, 6, 7, 8, 9, 10 (mod 11)
=⇒ n5 ≡ 0, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1 (mod 11).

Hence a polynomial of the form P (n) = (n5 + a)/11 has the desired property if and only
if a ≡ ±1 (mod 11). This completes the proof.
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A Variant. We start by following the first solution up to equation (4). We note that
b = 1 is a trivial solution, and assume from now on that b > 2. As (x− 1)5 + a and x5 + a
have different parity, b must be odd. As B in (3) is a multiple of b, we conclude that (i)
b is not divisible by 5 and that (ii) b and x are relatively prime. As C = 10x(2x2 + 1) in
(4) is divisible by b, we altogether derive

E := 2x2 + 1 ≡ 0 (mod b).

Together with (2) this implies that

5E2 + 10E − 2A = 11 ≡ 0 (mod b).

Hence b = 11 is the only remaining candidate, and it is handled as in the first solution.

Solution 2: Let p be a prime such that p divides b. For some integer x, we have

(x− 1)5 ≡ x5 ≡ (x+ 1)5 (mod p).

Now, there is a primitive root g modulo p, so there exist u, v, w such that

x− 1 ≡ gu (mod p), x ≡ gv (mod p), x+ 1 ≡ gw (mod p). (6)

The condition of the problem is thus

g5u ≡ g5v ≡ g5w (mod p) =⇒ 5u ≡ 5v ≡ 5w (mod p− 1).

If p 6≡ 1 (mod 5), then 5 is invertible modulo p − 1 and thus u ≡ v ≡ w (mod p − 1),
i.e. x− 1 ≡ x ≡ x + 1 (mod p). This is a contradiction. Hence p ≡ 1 (mod 5) and thus
u ≡ v ≡ w (mod p−1

5 ). Thus, from (6), there exist integers k, ` such that

x− 1 ≡ gv+k p−1
5 ≡ xtk (mod p)

x+ 1 ≡ gv+` p−1
5 ≡ xt` (mod p)

 where t = g
p−1

5 .

Let r = tk and s = t`. In particular, the above yields r, s 6≡ 1 (mod p), and thus

x ≡ −(r − 1)−1 ≡ (s− 1)−1 (mod p).

It follows that

(r − 1)−1 + (s− 1)−1 ≡ 0 (mod p) =⇒ r + s ≡ 2 (mod p).

Now t5 ≡ 1 (mod p), so r and s must be congruent, modulo p, to some of the non-trivial
fifth roots of unity t, t2, t3, t4. Observe that, for any pair of these non-trivial roots of unity,
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either one is the other’s inverse, or one is the other’s square. In the first case, we have
r + r−1 ≡ 2 (mod p), implying r ≡ 1 (mod p), a contradiction. Hence

r + r2 ≡ 2 (mod p) =⇒ (r − 1)(r + 2) ≡ 0 (mod p),

or

s2 + s ≡ 2 (mod p) =⇒ (s− 1)(s+ 2) ≡ 0 (mod p).

Thus, since r, s 6≡ 1 (mod p), we have r ≡ −2 (mod p) or s ≡ −2 (mod p), and thus
1 ≡ r5 ≡ −32 (mod p) or an analogous equation obtained from s. Hence p | 33. Since
p ≡ 1 (mod 5), it follows that p = 11, i.e. b is a power of 11.

Examining the fifth powers modulo 11, we see that b = 11 is indeed a solution with
a ≡ ±1 (mod 11) and, correspondingly, x ≡ ±4 (mod 11). Now suppose, for the sake of
contradiction, that 112 divides b. Then, for some integer m, we must have(

x− 1, x, x+ 1
)
≡ ±

(
3 + 11m, 4 + 11m, 5 + 11m

)
(mod 121),

and thus, substituting into the condition of the problem,

35 + 55 · 34m ≡ 45 + 55 · 44m ≡ 55 + 55 · 54m (mod 121)
=⇒ 1− 22m ≡ 56 + 44m ≡ −21 + 11m (mod 121).

Hence 33m ≡ 22 (mod 121) and 33m ≡ 44 (mod 121), so 22 ≡ 0 (mod 121), a contra-
diction. It follows that b | 11.

Finally, we conclude that the positive integers satisfying the original condition are
b = 11, with a ≡ ±1 (mod 11), and b = 1, for any positive integer a.

Solution 3: Denote the three consecutive integers by x−1, x, and x+1 as in Solution 1.
By computing the differences in (1), we find

F := (x+ 1)5 − x5 = 5x4 + 10x3 + 10x2 + 5x+ 1 ≡ 0 (mod b),

G := x5 − (x− 1)5 = 5x4 − 10x3 + 10x2 − 5x+ 1 ≡ 0 (mod b).
By determining the polynomial greatest divisor of F (x) and G(x) using the Euclidean
algorithm, we find that

p(x)F (x) + q(x)G(x) = 22, (7)

where

p(x) = −15x3 + 30x2 − 28x+ 11,
q(x) = 15x3 + 30x2 + 28x+ 11.

Since b |F (x) and b |G(x), it follows from (7) that b | 22. We now finish off the problem
as in Solution 1.
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Problem 5. (Proposed by Waldemar Pompe, Poland)
Let Ω be the circumcircle of the triangle ABC. The circle ω is tangent to the
sides AC and BC, and it is internally tangent to Ω at the point P . A line
parallel to AB and intersecting the interior of triangle ABC is tangent to ω
at Q.

Prove that ∠ACP = ∠QCB.

Solution 1: Assume that ω is tangent to AC and BC at E and F , respectively and
let PE, PF , PQ meet Ω at K, L, M , respectively. Let I and O denote the respective
centres of ω and Ω, and consider the homethety H that maps ω onto Ω. Now K is the
image of E under H , and EI ⊥ AC. Hence OK ⊥ AC, and thus K is the midpoint of
the arc CA. Similarly, L is the midpoint of the arc BC and M is the midpoint of the arc
BA. It follows that arcs LM and CK are equal, because

)

BM =

)

MA =⇒

)

BL +

)

LM =

)

MK +

)
KA =⇒

)
LC +

)

LM =

)

MK +

)

CK

=⇒ 2

)

LM +

)

MC =

)

MC + 2

)
CK =⇒

)
LM =

)

CK.

Thus arcs FQ and DE of ω are equal, too, where D is the intersection of CP with ω. Since
CE and CF are tangents to ω, this implies that ∠DEC = ∠CFQ. Further, CE = CF ,
and thus triangles CED and CFQ are congruent. In particular, ∠ECD = ∠QCF , as
required.

C

E

Fω

P

Ω

A B

QK

L

M

D

I
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A Variant. As above, we show that arcs FQ and DE of ω are equal, which implies
that DEFQ is an isoceles trapezoid, and so we have ∠FED = ∠QFE. Together with
|FQ| = |DE|, this implies that, since E and F are images of each other under reflection
in the angle bisector CI of ∠C, so are the segments [EQ] and [FD], and, in particular,
D and Q. In turn, this yields ∠ECD = ∠QCF , as required.

Remark. Let J denote the incentre of ABC. By Sawayama’s theorem, J is the midpoint
of [EF ], i.e. PJ is a median of PFE. Since C is the intersection of the tangents AC and
BC to the circumcircle of PFE at E and F , respectively, PC is a symmedian of PFE.
Thus ∠CPE = ∠FPJ . But, since the arcs FQ and DE of ω are equal, ∠CPE = ∠FPQ.
This shows that J lies on the line PQ.

Another Variant. We show that arcs QE and FD are equal, and then finish as in the
main solution. Let BP meet ω again at Z. Consider the homothety H that maps ω onto
Ω. Under H , D 7→ C and Z 7→ B, so DZ ‖ CB. (This also follows by considering the
common tangent to ω and Ω, and tangential angles.) Now, by power of a point,

BF 2 = BZ ·BP, CF 2 = CD · CP.

Now DZ ‖ CB implies BZ/BP = CD/CP , and so, dividing the two previous equa-
tions by each other, and taking square roots, BF/CF = BP/CP . Hence PF bissects
angle ∠BPC. Now let ∠BPF = ∠FPC = β. By tangential angles, it follows that
∠CFD = β. Further, ∠BAC = ∠BPC = 2β. Let the tangent to ω through Q and
parallel to AB meet AC at X. Then ∠QXC = 2β, so, since XQ = XE by tangency,
∠QEX = β. By tangential angles, it follows that arcs FD and QE are equal, as claimed.

C

E

Fω

P

Ω

A B

QX D

Z
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Solution 2: Let I and O denote the respective centres of ω and Ω. Observe that
CI is the angle bisector of angle ∠C, because ω is tangent to AC and BC. Consider the
homethety H that maps ω onto Ω. Let M be the image of Q under H . By construction,
IQ ⊥ AB, so OM ⊥ AB. Thus the diameter OM of Ω passes through the midpoint of
the arc AB of Ω, which also lies on the angle bisector CI. This implies that ∠ICM = 90◦.
We next show that P, I,Q,C lie on a circle. Notice that

∠PQI = 90◦ − 1
2∠QIP = 90◦ − 1

2∠MOP = 90◦ −
(
180◦ − ∠PCM

)
=
(
∠PCI + ∠ICM

)
− 90◦ = ∠PCI.

Hence P, I,Q,C lie on a circle. But PI = IQ, so CI is the angle bisector of ∠PCQ. Since
CI is also the angle bisector of angle ∠C, it follows that ∠ACP = ∠QCB, as required.

C

ω

P

O

Ω

A B

Q

M

I

T

A Variant. We show that PIQC is cyclic by chasing angles. Define α = ∠BAC,
β = ∠CBA and γ = ∠ACP . For convenience, we consider the configuration where A
and P lie one the same side of the angle bisector CI of ∠C. In this configuration,

∠PCI = 1
2∠ACB − ∠ACP = 90◦ − 1

2α−
1
2β − γ.

Now notice that ∠PBA = ∠ACP = γ, and therefore ∠CAP = 180◦ − β − γ, whence
∠PAB = 180◦−α−β−γ. Further, PO is a diameter of Ω, and therefore ∠APO = 90◦−γ.
Let AB and PO intersect at T . Then

∠BTO = 180◦ − ∠PAB − ∠APO = α + β + 2γ − 90◦.
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But QI ⊥ AB by construction, and thus

∠OIQ = 90◦ − ∠BTO = 180◦ − α− β − 2γ
=⇒ ∠QIP = 180◦ − ∠OIQ = α + β + 2γ
=⇒ ∠PQI = 90◦ − 1

2α−
1
2β − γ.

Hence ∠ICQ = ∠PQI, and thus PIQC is cyclic. Since PI = QI, it follows that CI is
the angle bisector of ∠PCQ, which completes the proof.

Solution 3: Let I and O denote the respective centres of ω and Ω. Let D be the second
point of intersection of CP with ω, and let ` denote the tangent to ω at D, which meets
AC at S. Hence ID ⊥ `. By construction, P , I, O lie one a line, and hence the isosceles
triangles PID and POC are similar. In particular, it follows that OC ⊥ `, so C is the
midpoint of the arc of Ω defined by the points of intersection of ` with Ω. It is easy to
see that this implies that

∠DSC = ∠ABC.

Under reflection in the angle bisector CI of ∠C, ` is thus mapped to a tangent to ω
parallel to AB and intersecting the interior of ABC, since ω is mapped to itself under
this reflection. In particular, D is mapped to Q, and thus ∠QCB = ∠ACD, as required.

C

ω

P

O

Ω

A B

I

D

S

`

Remark. Conceptually, this solution is similar to Solution 1, but here, we proceed
more directly via the reflectional symmetry. Therefore, this solution links Solution 1 to
Solution 4, in which we use an inversion.
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Solution 4: Let the tangent to ω at Q meet AC and BC at X and Y , respectively. Then
AC/XC = BC/Y C, and thus there is a radius r such that r2 = AC · Y C = BC · XC.
Let Γ denote the circle with centre C and radius r, and consider the inversion I in the
circle Γ . Under I ,

A 7−→ A′, the point on the ray CA satisfying CA′ = CY ;
B 7−→ B′, the point on the ray CB satisfying CB′ = CX;
Ω 7−→ the line A′B′;
ω 7−→ ω′, the excircle of CA′B′ opposite C;
P 7−→ P ′, the point where ω′ touches A′B′;

In particular, ω′, the image of ω, is a circle tangent to AC, BC and A′B′, so it is either
the excircle of CA′B′ opposite C, or the incircle of CA′B′. Let ω be tangent to BC at F ,
and let F ′ be the image of F under I . Then CF · CF ′ = BC ·XC. Now CF < BC, so
CF ′ > CX = CB′. Hence ω′ cannot be the incircle, so ω′ is indeed the excircle of CA′B′
opposite C.

Now note that ω is the excircle of CXY opposite C. The reflection about the angle
bisector of ∠C maps X to B′, Y to A′. It thus maps the triangle CXY to CB′A′, ω to
ω′ and, finally, Q to P ′. It follows that ∠ACP = ∠ACP ′ = ∠QCB, as required.

C

ω

P

Ω

A B

Q

X Y

A′

B′

P ′

Γ

Solution 5: Let r be the radius such that r2 = AC ·BC. Let J denote the composition
of the inversion I in the circle of centre C and radius r, followed by the reflection in the
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angle bisector of ∠C. Under J ,

A 7−→ B, B 7→ A;
Ω 7−→ the line AB;
ω 7−→ ω′, the excircle of ABC opposite the vertex C;
P 7−→ Q′, the point where ω′ touches AB;

In particular, note that the image ω′ of ω under J is a circle tangent to AC, BC and
AB, so it is either the incircle of ABC, or the excircle opposite vertex C. Observe that
r > min {AC,BC}, so the image of the points of tangency of ω must lie outside ABC,
and thus ω′ cannot be the incircle. Thus ω′ is the excircle opposite vertex C as claimed.
Further, the point of tangency P is mapped to Q′.

Now, since the line CP is mapped to itself under the inversion I , and mapped onto
CQ′ under J , CP and CQ′ are images of each other under reflection in the angle bisector
of ∠C. But C, Q, Q′ lie on a line for there is a homothety with centre C that maps ω
onto the excircle ω′. This completes the proof.

C

ω

P

Ω

A B

Q

ω′

Q′

Solution 6: Assume that ω is tangent to AC and BC at E and F , respectively. Assume
that CP meets ω at D. Let I and O denote the respective centres of ω and Ω. To set
up a solution in the complex plane, we take the circle ω as the unit circle centered at the
origin of the complex plane, and let PO be the real axis with o > 0, where we use the
convention that lowercase letters denote complex coordinates of corresponding points in
the plane denoted by uppercase letters.
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Now, a point Z on the circle Ω satisfies

|z − o|2 = (o+ 1)2 ⇐⇒ zz∗ − o(z + z∗)− 2o− 1 = 0.

The triangle ABC is defined by the points E and F on ω, the intersection C of the
corresponding tangents lying on Ω. Thus c = 2ef

/
(e+ f), and further

|c− o|2 = (o+ 1)2 ⇐⇒ cc∗ − o(c+ c∗)− 2o− 1 = 0, (1)

and this is the equality defining o. The points A and B are the second intersection points
of Ω with the tangents to ω at E and F respectively. A point Z on the tangent through
E is given by z = 2e− e2z∗, and thus A and C satisfy(

2e− e2z∗
)
z∗ − o

(
2e− e2z∗ + z∗

)
− 2o− 1 = 0

⇐⇒ −e2z∗2 +
(
2e+ oe2 − o

)
z∗ −

(
2eo+ 2o+ 1

)
= 0

⇐⇒ z∗2 −
(
2e∗ + o− oe∗2

)
z∗ +

(
2e∗o+ 2oe∗2 + e∗2

)
= 0,

since |e| = 1. Thus

a∗ + c∗ = 2e∗ + o− oe∗2 =⇒ a∗ = 2e∗f
e+ f

+ o
(
1− e∗2

)
,

and similarly

b∗ = 2f ∗e
f + e

+ o
(
1− f ∗2

)
.

Then

b∗ − a∗ = 2(ef ∗ − e∗f)
e+ f

+ o
(
e∗2 − f ∗2

)

=
2ef

(
f ∗2 − e∗2

)
e+ f

+ o
(
e∗2 − f ∗2

)
=
(
f ∗2 − e∗2

)( 2ef
e+ f

− o
)

=
(
f ∗2 − e∗2

)
(c− o).

Now let Z be a point on the tangent to ω parallel to AB passing through Q. Then

z = 2q − q2z∗ ⇐⇒ z − q = q − q2z∗ = −q2(z∗ − q∗),

for |q| = 1, and thus

b− a
b∗ − a∗

= z − q
z∗ − q∗

= −q
2(z∗ − q∗)
z∗ − q∗

= −q2.
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It follows that

q2 = − b− a
b∗ − a∗

= −

(
f 2 − e2

)
(c∗ − o)(

f ∗2 − e∗2
)
(c− o)

= e2f 2 c
∗ − o
c− o

= e2f 2 (c∗ − o)2

|c− o|2
= e2f 2 (c∗ − o)2

(1 + o)2 ,

where we have used (1). In particular,

q = ef
c∗ − o
1 + o

,

where the choice of sign is to be justified a posteriori. Further, the point D satisfies

−dp = d− p
d∗ − p∗

= c− p
c∗ − p∗

=⇒ d = − c− p
c∗p− 1 = c+ 1

c∗ + 1 ,

using p = −1 to obtain the final equality.
Now, it suffices to show that (i) DQ ‖ EF ⊥ CI and (ii) the midpoint of [DQ] is on

CI. The desired equality then follows by symmetry with respect to the angle bisector of
the angle ∠ACB. Notice that (i) is equivalent with

d− q
d∗ − q∗

= e− f
e∗ − f ∗

⇐⇒ dq = ef.

for [DQ] and [EF ] are chords of ω. But

dq = ef ⇐⇒ c+ 1
c∗ + 1ef

c∗ − o
1 + o

= ef ⇐⇒ (c+ 1)(c∗ − o) = (c∗ + 1)(1 + o)

⇐⇒ cc∗ − o(c+ c∗)− 2o− 1 = 0.

The last equality is precisely the defining relation for o, (1). This proves (i). Further, the
midpoint of [DQ] is 1

2(d+ q), so it remains to check that

dq = d+ q

d∗ + q∗
= c

c∗
= ef,

where the first equality expresses that [DQ] is a chord of ω (obviously) containing its
midpoint, the second equality expresses the alignment of the midpoint of [DQ], C and
I, and the third equality follows from the expression for c. But we have just shown that
dq = ef . This proves (ii), justifies the choice of sign for q a posteriori, and thus completes
the solution of the problem.
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Problem 6. (Proposed by Emil Kolev, Bulgaria)
Snow White and the Seven Dwarves are living in their house in the forest.
On each of 16 consecutive days, some of the dwarves worked in the diamond
mine while the remaining dwarves collected berries in the forest. No dwarf
performed both types of work on the same day. On any two different (not
necessarily consecutive) days, at least three dwarves each performed both
types of work. Further, on the first day, all seven dwarves worked in the
diamond mine.

Prove that, on one of these 16 days, all seven dwarves were collecting
berries.

Solution 1: We define V as the set of all 128 vectors of length 7 with entries in {0, 1}.
Every such vector encodes the work schedule of a single day: if the i-th entry is 0 then
the i-th dwarf works in the mine, and if this entry is 1 then the i-th dwarf collects berries.
The 16 working days correspond to 16 vectors d1, . . . , d16 in V , which we will call day-
vectors. The condition imposed on any pair of distinct days means that any two distinct
day-vectors di and dj differ in at least three positions.

We say that a vector x ∈ V covers some vector y ∈ V , if x and y differ in at most
one position; note that every vector in V covers exactly eight vectors. For each of the 16
day-vectors di we define Bi ⊂ V as the set of the eight vectors that are covered by di. As,
for i 6= j, the day-vectors di and dj differ in at least three positions, their corresponding
sets Bi and Bj are disjoint. As the sets B1, . . . , B16 together contain 16 · 8 = 128 = |V |
distinct elements, they form a partition of V ; in other words, every vector in V is covered
by precisely one day-vector.

The weight of a vector v ∈ V is defined as the number of 1-entries in v. For
k = 0, 1, . . . , 7, the set V contains

(
7
k

)
vectors of weight k. Let us analyse the 16 day-

vectors d1, . . . , d16 by their weights, and let us discuss how the vectors in V are covered
by them.

1. As all seven dwarves work in the diamond mine on the first day, the first day-vector is
d1 = (0000000). This day-vector covers all vectors in V with weight 0 or 1.

2. No day-vector can have weight 2, as otherwise it would differ from d1 in at most two
positions. Hence each of the

(
7
2

)
= 21 vectors of weight 2 must be covered by some

day-vector of weight 3. As every vector of weight 3 covers three vectors of weight 2,
exactly 21/3 = 7 day-vectors have weight 3.

3. How are the
(

7
3

)
= 35 vectors of weight 3 covered by the day-vectors? Seven of them are

day-vectors, and the remaining 28 ones must be covered by day-vectors of weight 4. As
every vector of weight 4 covers four vectors of weight 3, exactly 28/4 = 7 day-vectors
have weight 4.
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To summarize, one day-vector has weight 0, seven have weight 3, and seven have weight 4.
None of these 15 day-vectors covers any vector of weight 6 or 7, so that the eight heavy-
weight vectors in V must be covered by the only remaining day-vector; and this remaining
vector must be (1111111). On the day corresponding to (1111111) all seven dwarves are
collecting berries, and that is what we wanted to show.

Solution 2: If a dwarf X performs the same type of work on three days D1, D2, D3,
then we say that this triple of days is monotonous for X. We claim that the following
configuration cannot occur: There are three dwarves X1, X2, X3 and three days D1, D2,
D3, such that the triple (D1, D2, D3) is monotonous for each of the dwarves X1, X2, X3.

(Proof: Suppose that such a configuration would occur. Then among the remaining
dwarves there exist three dwarves Y1, Y2, Y3 that performed both types of work on day
D1 and on day D2; without loss of generality these three dwarves worked in the mine on
day D1 and collected berries on day D2. On day D3, two of Y1, Y2, Y3 performed the same
type of work, and without loss of generality Y1 and Y2 worked in the mine. But then on
days D1 and D3, each of the five dwarves X1, X2, X3, Y1, Y2 performed only one type of
work; this is in contradiction with the problem statement.)

Next we consider some fixed triple X1, X2, X3 of dwarves. There are eight possible
working schedules for X1, X2, X3 (like mine-mine-mine, mine-mine-berries, mine-berries-
mine, etc). As the above forbidden configuration does not occur, each of these eight
working schedules must occur on exactly two of the sixteen days. In particular this
implies that every dwarf worked exactly eight times in the mine and exactly eight times
in the forest.

For 0 6 k 6 7 we denote by d(k) the number of days on which exactly k dwarves
were collecting berries. Since on the first day all seven dwarves were in the mine, on each
of the remaining days at least three dwarves collected berries. This yields d(0) = 1 and
d(1) = d(2) = 0. We assume, for the sake of contradiction, that d(7) = 0 and hence

d(3) + d(4) + d(5) + d(6) = 15. (1)

As every dwarf collected berries exactly eight times, we get that, further,

3 d(3) + 4 d(4) + 5 d(5) + 6 d(6) = 7 · 8 = 56. (2)

Next, let us count the number q of quadruples (X1, X2, X3, D) for which X1, X2, X3
are three pairwise distinct dwarves that all collected berries on day D. As there are
7 · 6 · 5 = 210 triples of pairwise distinct dwarves, and as every working schedule for three
fixed dwarves occurs on exactly two days, we get q = 420. As every day on which k
dwarves collect berries contributes k(k − 1)(k − 2) such quadruples, we also have

3 · 2 · 1 · d(3) + 4 · 3 · 2 · d(4) + 5 · 4 · 3 · d(5) + 6 · 5 · 4 · d(6) = q = 420,
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which simplifies to

d(3) + 4 d(4) + 10 d(5) + 20 d(6) = 70. (3)

Finally, we count the number r of quadruples (X1, X2, X3, D) for which X1, X2, X3 are
three pairwise distinct dwarves that all worked in the mine on day D. Similarly as above
we see that r = 420 and that

7 · 6 · 5 · d(0) + 4 · 3 · 2 · d(3) + 3 · 2 · 1 · d(4) = r = 420,

which simplifies to

4 d(3) + d(4) = 35. (4)

Multiplying (1) by −40, multiplying (2) by 10, multiplying (3) by −1, multiplying (4) by
4, and then adding up the four resulting equations yields 5d(3) = 30 and hence d(3) = 6.
Then (4) yields d(4) = 11. As d(3) + d(4) = 17, the total number of days cannot be 16.
We have reached the desired contradiction.

A Variant. We follow the second solution up to equation (3). Multiplying (1) by 8,
multiplying (2) by −3, and adding the two resulting equations to (3) yields

3 d(5) + 10 d(6) = 22. (5)

As d(5) and d(6) are positive integers, (5) implies 0 6 d(6) 6 2. Only the case d(6) = 1
yields an integral value d(5) = 4. The equations (1) and (2) then yield d(3) = 10 and
d(4) = 0.

Now let us look at the d(3) = 10 special days on which exactly three dwarves were
collecting berries. One of the dwarves collected berries on at least five special days (if every
dwarf collected berries on at most four special days, this would allow at most 7 · 4/3 < 10
special days); we call this dwarf X. On at least two out of these five special days, some
dwarf Y must have collected berries together with X. Then these two days contradict
the problem statement. We have reached the desired contradiction.

Comment. Up to permutations of the dwarves, there exists a unique set of day-vectors
(as introduced in the first solution) that satisfies the conditions of the problem statement:

0000000 1110000 1001100 1000011 0101010 0100101 0010110 0011001
1111111 0001111 0110011 0111100 1010101 1011010 1101001 1100110
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